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Abstract—This paper investigates the secrecy performance of
an underlay cooperative cognitive relaying network, wherein a
secondary source vehicle communicates with a fixed secondary
destination terminal via a direct link and with the assistance
of a secondary amplify-and-forward relay vehicle in the pres-
ence of a passive secondary eavesdropper vehicle, taking into
consideration of interference at the primary user. We assume
that the eavesdropper vehicle takes the advantages of both the
relay link and direct link. We consider that vehicle-to-vehicle
links are modeled as double-Rayleigh fading, while vehicle-to-
fixed infrastructure links are modeled as Rayleigh fading. Such
a scenario finds it relevancy in vehicle-to-vehicle communication
and/or vehicle-to-infrastructure communication under spectrum
sharing heterogeneous cooperative vehicular networks. For such
a realistic scenario, in particular, we derive a tight lower
bound expression of the secrecy outage probability under mixed
Rayleigh and double-Rayleigh fading channels. We also present
an effective secrecy diversity order analysis and show that the
considered system can achieve a secrecy diversity order of 2 for
infinitely large average channel gain values of the main links.
Finally, we demonstrate the accuracy of our analytical findings
via numerical and simulation results and show the impact of
channel conditions, primary interference constraints, and direct
links on the secrecy performance of the considered system.

Index Terms—Physical-layer security, cooperative cognitive
relaying networks, vehicle-to-vehicle communications, secrecy
outage probability, double-Rayleigh fading channels.

I. INTRODUCTION

The evolution of 5G and beyond communication networks
promises reliable connectivity and seamless integration of
various complex heterogeneous networks to provide a truly
digital world. One such key paradigm of 5G framework is
driven by the advancements in the development of autonomous
connected vehicles with embedded sensors forming vehicu-
lar communication networks [1]. These networks promise a
plethora of mobility world applications, e.g., intelligent trans-
portation system (ITS), environment monitoring, infotainment
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services etc. With such wide and real-time network access, a
huge surge in the wireless data traffic is expected over the
limited spectrum allocated for such networks apart from the
challenges of maintaining a reliable connectivity, and informa-
tion security and privacy. To this end, cooperative cognitive re-
laying technology can be used to support the shared spectrum
access, and a better coverage and reliability for vehicle-to-
everything (V2X) communications [2]-[4]. Furthermore, the
aspects of cooperativeness, mobility, heterogeneity, dynamic
nature of cognitive radios, and wireless transmissions have
thrown up various new information security challenges in such
networks [5]-[7]. Existing security solutions exploit key-based
cryptographic techniques implemented on the upper layers, for
which establishing an infrastructure may be difficult [7], [8].

Recently, physical-layer security (PHY-security) techniques
have gained a wide research interest, as they exploit inherent
nature of the wireless channels such as, fading, interference,
to realize key-less secure transmissions via various coding and
signal processing methods [8], [9]. Such techniques operate
independently of the existing key-based security infrastructure
and are efficient in terms of cost and resource utilization.
Therefore, exploiting PHY-security in V2X enabled cooper-
ative cognitive relay networks is the main focus of this paper.

A. Related Works

Owing to PHY-security advantages, the secrecy performance
of cooperative relaying networks without adopting a cognitive
spectrum sharing framework under various fading channels
has been well examined in the literature (see [10]-[17] and
the references therein). Specifically, the secrecy outage perfor-
mance has been analyzed over Rayleigh fading in [10], [11],
Nakagami-m fading in [12]-[14], dual-correlated Rayleigh
fading in [15], Rayleigh-dual correlated Rician fading in [16],
and mixture Gamma distributed fading [17]. Of particular
interest are the PHY-security in cooperative cognitive relaying
networks, which has been studied thoroughly in the literature
[18]-[33]. The authors in [18] and [19] investigated PHY-
security performance of cooperative cognitive relay networks
under Rayleigh fading. Furthermore, the authors in [20]-
[23] studied the impact of relay diversity on the secrecy
performance of such networks under Rayleigh fading. The
authors in [24], [25] investigated PHY-security performance of
the cooperative cognitive networks with multiple amplify-and-
forward (AF) relays in the presence of multiple eavesdroppers



TABLE I
COMPARISON OF PROPOSED SYSTEM WITH RELATED WORKS

Context This Work [37], [38] [39] [40] [41], [42] [44]
Cooperative Cognitive
Relay Network

Yes No No No Yes Yes

Relaying Protocol AF AF DF AF DF AF
Impact of Direct Links Yes Yes No No No No
V2X Scenario Yes Yes Yes Yes Yes Yes
PHY-Security Yes Yes Yes Yes No Yes
Fading Scenario Mixed Rayleigh and

Double-Rayleigh
Mixed Rayleigh and
Double-Rayleigh

Double-Rayleigh Mixed Nakagami-m and
Double Nakagami-m

Mixed Rayleigh and
Double-Rayleigh

Mixed Rayleigh and
Double-Rayleigh

over Rayleigh fading. The authors in [26] and [27] analyzed
the secrecy performance of such networks with single and mul-
tiple relays, respectively, under Nakagami-m fading. Recently,
the residual energy maximization problem with multiple eaves-
droppers has been studied over Rayleigh fading in [28]. The
authors in [29] used relay selection alongwith jamming strat-
egy to improve the network secrecy performance. The authors
in [30] investigated PHY-security performance in cognitive
Internet of Things (IoT) networks and proposed a jammer
selection strategy. Moreover, the authors in [31] proposed an
opportunistic source and jammer selection strategy among the
multiple source nodes to improve the security of a cooperative
cognitive network with multi-antenna relay and base-station in
the presence of multi-antenna multiple eavesdroppers under
Nakagami-m fading. The authors in [32], [33] studied PHY-
security with outdated channel estimates for such networks.
However, the above studies for cooperative relay networks
without cognitive framework [10]-[17] and with cognitive
scenario [18]-[33] were confined to the environment, where the
terminals are fixed and the channel between them is modeled
as Rayleigh/Nakagami-m/Rician fading.

On the other hand, Internet of Vehicles (IoV) and V2X
communications are integral parts of the evolving 5G and
beyond communication networks, which would be character-
ized by heterogeneity both in their link characteristics and
embedded sensors computational ability. Specifically, such
networks involve both vehicle-to-fixed infrastructure (V2I) and
vehicle-to-vehicle (V2V) links. Owing to the high mobility
of vehicles, the classical Rayleigh or Nakagami-m fading
channels do not fit well for V2V communications [34]-[36].
Instead, cascaded Rayleigh (double-Rayleigh) channel model-
ing is shown to be more appropriate in characterizing the V2V
communication links based on both the field measurement
and theoretical analyses [34]-[36]. The secrecy performance
analyses of cooperative vehicular networks over cascaded
fading channels have been studied in [37]-[40]. However, all
these works were carried out over non-cognitive framework.
Albeit, the performance analysis of cooperative cognitive relay
networks with cascaded fading channel modeling for V2V
links is limited. The authors in [41] evaluated the performance
of a cooperative cognitive network with multiple decode-and-
forward relays under double-Rayleigh fading. Also, the authors
in [42] evaluated the performance of multi-hop cognitive
radio networks with imperfect channel estimates over double-
Rayleigh fading. However, the works [41] and [42] did not
consider PHY-security aspects. Recently, the authors in [43]
studied the trade-off between security and reliability for multi-

hop cognitive V2V networks over double-Rayleigh fading.
The authors in [44] evaluated PHY-security of cooperative
cognitive vehicular relaying networks over cascaded fading.

B. Motivation

From the aforesaid works, it is evident that the authors
in [37]-[40] investigated the secrecy performance of V2X
enabled cooperative relay networks without considering the
cognitive framework. However, the increasing demand of V2X
applications and services have burdened the dedicated spec-
trum band allocated for such networks. The use of cognitive
radio technology in V2X enabled cooperative relay networks
allows them to opportunistically access an additional spectrum
band assigned for primary users without affecting the primary
transmission. This introduces additional channels associated
with the interfering links between secondary transmitters and
primary receiver and brings the dependency in the channel
gains of the instantaneous end-to-end signal-to-noise ratios
at the destination and eavesdropper, which further makes
the performance analysis of such V2X enabled cooperative
cognitive relay networks more challenging and fundamentally
different from [37]-[40]. Moreover, the efforts to study the
performance of such networks without taking PHY-security
into account have been made in [41], [42]. A little effort
has been directed to analyze PHY-security in such networks
with secondary V2V links [44], but the authors ignored the
advantages of direct links (i.e., the channel between the source-
to-destination and between the source-to-eavesdropper). In
practice, a direct link between transmitter and receiver can be
available when the receiver does not experience severe fading
or shadowing. Also, the direct links can affect both legitimate
and wiretap transmissions, hence the impact of direct links
should be considered for secure transmission in such networks.

To the best of authors’ knowledge, there is no existing
work which studied PHY-security in cooperative cognitive
AF relay networks by exploiting the direct links under V2X
scenario, wherein V2V and V2I channels are modeled as
double-Rayleigh fading and Rayleigh fading, respectively. This
is because of the reason that the involvement of direct links
in such networks under mixed fading environment makes the
analysis more complex and intractable. Therefore, it is very
important to investigate PHY-security in cooperative cognitive
AF relay networks with direct links under mixed Rayleigh and
double-Rayleigh fading channels. Further, Table I presents the
comparison between the proposed work and existing works to
clearly highlight the contributions of this paper.



C. Contributions

This paper develops an understanding on PHY-security
performance in V2X enabled cooperative cognitive AF relay
networks under mixed Rayleigh and double-Rayleigh fading.
The theoretical findings of this paper thus 1) pose many
mathematical challenges and complications due to the involved
direct links and double-Rayleigh fading, 2) are unique as
they are reported first time in the literature to examine PHY-
security in the considered network with direct links and over
mixed Rayleigh and double-Rayleigh fading, and 3) lay the
foundation for analyzing PHY-security over more general-
ized cascaded fading models, such as, double Nakagami-m,
N*Rayleigh, N*Nakagami-m. Particularly, in this paper, a
secondary source S communicates with a secondary receiver
D via a secondary AF relay R and a direct link under the
interference constraints of primary user PU . In addition, a
secondary eavesdropper E overhears the information from
both S and R. We assume that S, R, and E are moving vehi-
cles, whereas PU and D are stationary vehicles. By modeling
V2V channels as double-Rayleigh fading and V2I channels
as Rayleigh fading, we analyze system’s secrecy performance.
The key contributions of this paper are summarized as follows.

1) By considering V2V links (S → R, S → E, and R →
E) as double-Rayleigh distributed and V2I links (S →
D, S → PU , R → PU , and R → D) as Rayleigh
distributed, we derive the tight lower bound expressions
for the cumulative distribution functions (CDFs) of the
signal-to-noise ratios (SNRs) conditioned on the channel
gains associated with S → PU and R→ PU links.

2) Using the derived conditional CDFs, we deduce a tight
lower bound secrecy outage probability (SOP) expres-
sion of the considered system under mixed Rayleigh and
double-Rayleigh fading. Although the SOP expression
involves Gauss-Laguerre series and infinite series, they
converge to accurate values after a few terms.

3) By evaluating the asymptotic SOP behavior when aver-
age channel power gains of the main channels tend to
infinity, we examine the effective secrecy diversity order
and the secrecy array gain of the considered system.
We demonstrate that the system can achieve a diversity
order of 2, which is independent of the parameters
related to eavesdropper and primary user. In addition, we
also show the convergence behavior of secrecy diversity
order under mixed Rayleigh and double-Rayleigh fading
channels for different involved channel parameters.

4) We verify our analytical findings via numerical and
simulation results, and show the impacts of channel
conditions associated with E and PU , and interfer-
ence constraints on the SOP performance. Further, we
illustrate that S → D and S → E direct links have
significant effects on the system’s SOP performance.

D. Structure

The remainder of this paper is organized as follows. Section
II presents our system setup. In Section III, we derive the
expression for the SOP, and analyze the effective secrecy diver-
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Fig. 1. The considered system model.

sity order. Section IV discusses the numerical and simulation
results, and finally, the conclusions are drawn in Section V.

Notations: Kv(·) denotes the v-th order modified Bessel
function of second kind [45, eq. (8.432)], Ψ(·, ·, ·) be-
ing the Kummer hypergeometric function [45, eq. (9.210)],
Gm,np,q

(
x
∣∣a1,··· ,ap
b1,··· ,bq

)
is the Meijer-G function [45, eq. (9.301)],

Gm1,n1 : n2,m2 : n3,m3
p1,q1 : p2,q2 : p3,q3

(
x, y
∣∣a1,··· ,ap1

b1,··· ,bq1

∣∣c1,··· ,cp2

d1,··· ,dq2

∣∣e1,··· ,ep3

f1,··· ,fq3

)
is the

extended generalized bi-variate Meijer-G function [46, eq.
(07.34.21.0081.01)], and Wu,v(z) denotes the Whittaker-W
function [46, eq. (07.45.02.0001.01)].

II. SYSTEM AND CHANNEL MODELS

We consider a secure cooperative cognitive relay network
as depicted in Fig. 1, where the nodes in the secondary
network communicate over the same licensed spectral band
allocated for the primary network in underlay mode. Such
systems can find their practical relevancy in many futuristic
communication systems, such as, cognitive IoT networks [30],
cognitive radio sensor networks [42], and cognitive vehicular
relaying networks [47], [48]. In particular, the primary network
consists of a PU , whereas the secondary network comprises
of S, R, and D nodes. An E also exists in the network to
eavesdrop the information. Each node has a single-antenna and
operate in half-duplex manner. Under passive eavesdropping
scenario, the instantaneous channel state information (CSI)
between S and E (R and E) is not available at S (R). Note that
in practice the eavesdropper is generally not cooperative and
not willing to feedback its instantaneous CSI to the legitimate
system [10]. Since the information of eavesdropper channel
does not change under the consideration of quasi-stationary
channel for a short duration (i.e., one fading block time),
therefore only statistical CSI of the eavesdropper is available
at the legitimate nodes. Also, during the overall process S
and R impose the interference at PU , since there is no
detection strategy available at PU to detect the interference
impinged by S and R. Moreover, we assume all the channels
to be quasi-static, reciprocal, and subject to independent and
non-identically distributed fading. Further, V2V channels, i.e.,
S → R, S → E, and R → E are assumed to experience
double-Rayleigh fading. In particular, the channel coefficients
hı for {ı} ∈ {SR, SE,RE} can be modeled as the product
of hı,1 and hı,2, where hı,1 and hı,2 are independent



complex Gaussian random variables having zero mean and
variance Ωı,1 and Ωı,2, respectively. On the other side, hSP ,
hRP , hRD, and hSD are the channel coefficients for S → PU ,
R→ PU , R→ D, and S → D V2I links, respectively, which
can be modeled as CN (0,ΩSP ), CN (0,ΩRP ), CN (0,ΩRD),
and CN (0,ΩSD), respectively. The additive white Gaussian
noise (AWGN) for each link is modeled as CN (0, N0).

In particular, S requires two transmission phases to transmit
secret information to D. During the first transmission phase, S
broadcasts a unit energy signal xs with power PS , and hence
the received signal at R and receiver i, for i ∈ {D,E}, can
be given as yR =

√
PShSRxs + nR, y

(1)
i =

√
PShRixs +

n
(1)
i , respectively, where nR and n

(1)
i denote the AWGNs at

the receivers R and i in the first transmission phase. In the
second transmission phase, R amplifies the received signal yR
with a variable gain A =

√
PR

PS |hSR|2+N0
, and broadcasts the

resultant signal to D, where PR is the relay transmit power.
Moreover, E in the network overhears the relayed information.
Therefore, the signal received at receiver i, for i ∈ {D,E},
can be given by y

(2)
i = AhRiyR + n

(2)
i , where n(2)

i denotes
the AWGN at receiver i in the second transmission phase.
Consequently, the instantaneous end-to-end SNRs received at
receiver i via relay link (i.e., S → R → i) and direct link
(i.e., S → i), for i ∈ {D,E}, can be given, respectively, by

ΛS→R→i =
PSPR|hSR|2|hRi|2

PS |hSR|2N0 + PR|hRi|2N0 +N2
0

, (1)

ΛS→i =
PS |hSi|2

N0
. (2)

Moreover, by applying the maximum ratio combining scheme,
the resultant SNR at receiver i, for i ∈ {D,E}, using (1) and
(2) can be given by zi = ΛS→i + ΛS→R→i.

According to underlay cognitive radio transmission, PS and
PR must be limited as to keep the interference imposed on PU
below the maximum tolerable interference level Q [19]-[21].
Therefore, the transmit powers at S and R are constrained1

by PS = Q
|hSP |2 and PR = Q

|hRP |2 , respectively, for ensuring
the QoS of PU . Using these constraints via (1) and (2), we
can obtain the resultant SNR at receiver i, for i ∈ {D,E}, as

zi = ΛSi + Λi, (3)

where Λi , ΛSRΛRi
ΛSR+ΛRi+1 , ΛSR = ρ|hSR|2

|hSP |2 , ΛRi = ρ|hRi|2
|hRP |2 ,

ΛSi = ρ|hSi|2
|hSP |2 , for i ∈ {D,E}, and ρ = Q

N0
as the transmit

SNR. Moreover, the capacity pertaining to S → R → i link
can be defined as Ci = 1

2 log2(1 + zi). Thus, the system
secrecy capacity is given by Csec = max(CD − CE , 0).

It should be noted that under double-Rayleigh fading,
the CDF and the probability distribution function (PDF) for
the channel gain |hı|2 (assuming Ωı,1 = Ωı,2 = Ωı),

1Here, we consider that the secondary vehicles share the licensed spectrum
to guarantee the quality-of-service (QoS) of PU , without taking into account
the specific QoS requirements of vehicular applications. However, there exist
several scenarios where the spectrum allocation is performed to meet the
QoS requirements of vehicular applications, such as bandwidth usage for
non-safety applications and delay constraints for safety-related applications
[48], [49]. Such scenarios may involve some additional QoS requirement
constraints/parameters, whose study is beyond the scope of this work.

for {ı} ∈ {SR, SE,RE}, are given as F|hı|2(y) =
1 − (2/Ωı)

√
yK1

(
(2/Ωı)

√
y
)
, y > 0 and f|hı|2(y) =

(2/Ω2
ı)K0

(
(2/Ωı)

√
y
)
, y > 0, respectively. Moreover, under

Rayleigh fading, the CDF and PDF of |hab|2, for {ab} ∈
{SD, SP,RP,RD}, can be expressed as F|hab|2(y) = 1 −
e−

y
Ωab , y > 0 and f|hab|2(y) = 1

Ωab
e−

y
Ωab , y > 0, respectively.

III. PERFORMANCE ANALYSIS

This section investigates the system’s secrecy performance
in terms of SOP and effective secrecy diversity order. Before
proceeding further, we first derive the tight lower bound of the
CDFs of zD and zE conditioned on |hSP |2 and |hRP |2 (as
zD and zE are dependent due to the involvement of common
channel gains |hSP |2 and |hRP |2), in the sequel. This will help
us to evaluate the performance measures under investigation.

A. CDFs of zD and zE conditioned on |hSP |2 and |hRP |2

Since zD and zE are dependent because of the involved
common channel gains X , |hSP |2 and Z , |hRP |2,
therefore, we first need to derive the conditional CDFs
FzD (y|X,Z) and FzE (y|X,Z) using (3). To proceed, with-
out loss of generality, we use the fact that the harmonic mean
of two positive numbers can be upper bounded by the mini-
mum of those two numbers,2 i.e., xy

x+y+1 '
xy
x+y < min(x, y)

[11], [37], and hence the upper bound of ΛD and ΛE can be
given as Λ̃D < min(ΛSR,ΛRD) and Λ̃E < min(ΛSR,ΛRE),
respectively. Thus, we can have zD = ΛSD + Λ̃D and
zE = ΛSE + Λ̃E with Λ̃D = min(ΛSR,ΛRD) and Λ̃E =
min(ΛSR,ΛRE). Consequently, the lower bound (LB) for the
CDFs Fzi(y|X,Z), for i ∈ {D,E}, can be expressed as

F LB
zi (y|X,Z) =

∫ x

0

FΛ̃i
(y − x|X,Z)fΛSi(x|X)dx. (4)

To evaluate (4), we first require the CDF of Λ̃i conditioned
on X,Z, for i ∈ {D,E}, as given in Proposition 1.

Proposition 1: Using the CDFs of ΛSR,ΛRD, and ΛRE , the
conditional CDFs FΛ̃D

(y|X,Z) and FΛ̃E
(y|X,Z) are given by

FΛ̃D
(y|X,Z)=1−2αSRe−αRDyZ

√
yXK1

(
2αSR

√
yX
)
, (5)

FΛ̃E
(y|X,Z) = 1− 4yαSRαRE

√
XZK1

(
2αSR

√
yX
)

×K1

(
2αRE

√
yZ
)
, (6)

where αSR = 1√
ρΩSR

, αRE = 1√
ρΩRE

, and αRD = 1
ρΩRD

.
Proof: See Appendix A for the detailed derivation.

Remark 1: From Proposition 1, it is noted that i) the condi-
tional CDFs in (5) and (6) mainly involve exponential function
and/or modified Bessel functions of second kind, which can
easily be evaluated for various values of involved parameters,
and hence make them mathematically tractable to use, and ii)
Proposition 1 will be useful in deriving the conditional CDFs
of instantaneous SNRs, zLB

i , for i ∈ {D,E}, in (4).
Remark 2: By invoking (5) and the conditional PDF

fΛSD (y|X) (can be obtained by differentiating conditional

2Note that the bound is quite accurate if x is far from y, while the accuracy
decreases if x is close to y. The bound becomes exact as x and y go to infinity.
The tightness of this bound is shown in Table-II under the SOP analysis.



TABLE II
SOP DIFFERENCE BETWEEN EXACT EXPRESSION AND APPROXIMATE EXPRESSION (WITH ΩSD = 0 DB AND Rs = 0.1 BPS/HZ)

SNR (dB) 0 5 10 15 20 25 30 35 40 45 50
Exact (ΩSR = ΩRD = 0 dB, ΩSE = ΩRE =
0 dB, ΩSP = ΩRP = 0 dB)

0.4998 0.4595 0.4426 0.4373 0.4372 0.4334 0.4368 0.4345 0.4374 0.4338 0.4397

Approximate (ΩSR = ΩRD = 0 dB, ΩSE =
ΩRE = 0 dB, ΩSP = ΩRP = 0 dB)

0.4978 0.4573 0.4449 0.4393 0.4397 0.4360 0.4349 0.4366 0.4371 0.4360 0.4370

Difference in percentage 0.4% 0.48% 0.51% 0.45% 0.56% 0.59% 0.43% 0.48% 0.06% 0.5% 0.61%
Exact (ΩSR = 10 dB, ΩRD = 0 dB, ΩSE =
ΩRE = 0 dB, ΩSP = ΩRP = 0 dB)

0.4886 0.4658 0.4591 0.4532 0.4506 0.4545 0.4535 0.4532 0.4507 0.4519 0.4514

Approximate (ΩSR = 10 dB, ΩRD = 0 dB,
ΩSE = ΩRE = 0 dB, ΩSP = ΩRP = 0 dB)

0.4880 0.4644 0.4565 0.4547 0.4529 0.4535 0.4511 0.4521 0.4510 0.4538 0.4534

Difference in percentage 0.12% 0.3% 0.56% 0.32% 0.5% 0.22% 0.53% 0.24% 0.06% 0.41% 0.44%
Exact (ΩSR = ΩRD = 10 dB, ΩSE =
ΩRE = 10 dB, ΩSP = ΩRP = 10 dB)

0.9812 0.9744 0.9734 0.9728 0.9727 0.9724 0.9708 0.9723 0.9714 0.9712 0.9725

Approximate (ΩSR = ΩRD = 10 dB, ΩSE =
ΩRE = 10 dB, ΩSP = ΩRP = 10 dB)

0.9753 0.9691 0.9668 0.9678 0.9660 0.9671 0.9655 0.9666 0.9675 0.9659 0.9662

Difference in percentage 0.6% 0.54% 0.68% 0.51% 0.69% 0.54% 0.54% 0.58% 0.4% 0.54% 0.65%

CDF FΛSD (y|X) = 1 − e−αSDyX with respect to y,
where αSD = 1

ρΩSD
) into (4), it is observed that the

integral involved in evaluating F LB
zD (y|X,Z) comprises of

an exponential term, an algebraic term, and a shifted ver-
sion of modified Bessel function of second kind (e.g.,
Kv(
√
y − x)), whose closed-form solution is tedious and

intractable. Also, substituting (6) and the conditional PDF
fΛSE (y|X) (can be calculated by differentiating conditional
CDF FΛSE (y|X) = 1 − 2αSE

√
yXK1

(
2αSE

√
yX
)

with
respect to y, where αSE = 1√

ρΩSE
) into (4), we need to

simplify an integral that involves powers and the product of
three Bessel functions of different orders and arguments (e.g.,
Ku(
√
y)Kv(a

√
y − x)Kv(b

√
y − x)), whose solution does not

exist. This implies that the exact evaluation of (4) using (5)
and (6) seems mathematically intractable.

Remark 3: The effective and tractable evaluation of (4) can
be obtained by applying a tight staircase approximation [51]
to the original triangular integral region in zD and zE with
M tractable rectangular sub-regions to evaluate F LB

zD (y|X,Z)
and F LB

zE (y|X,Z), as given in Proposition 2.
Proposition 2: The conditional CDFs F LB

zD (y|X,Z) and
F LB
zE (y|X,Z) in (4) can be expressed as

F LB
zD (y|X,Z) =

M∑
k=1

[
e−αSDXτk1y − 2αSR

√
Xe−αSDXτk1y

× e−(1−τk1)αRDZy
√
yK1

(
2αSR

√
yX
)
− e−αSDXτky + 2αSR

×
√
Xe−[αSDXτk+(1−τk1)αRDZ)]y√yK1

(
2αSR

√
yX
)]
, (7)

F LB
zE (y|X,Z) =

(
1− 2αSE

√
yX

M
K1

(
2αSE

√
yX

M

))
×
(

1− 4yαSRαRE
√
XZK1

(
2αSR

√
yX
)
K1

(
2αRE

√
yZ
))

+
M∑
j=2

[(
2αSE

√
τj1XK1

(
2αSE

√
τj1yX

)
− 2αSE

√
τjyX

×K1

(
2αSE

√
τjyX

))(
1− 4(1− τj1)yαSRαRE

√
XZ

×K1

(
2αSR

√
(1−τj1)yX

)
K1

(
2αRE

√
(1−τj1)yZ

))]
, (8)

where τk = k
M , τk1 = k−1

M , τj = j
M , and τj1 = j−1

M .

Proof: See Appendix B for the proof.
Remark 4: From Proposition 2, it is to be emphasized that

i) the conditional CDFs in (7) and (8) mainly consist of ex-
ponential function of type e−ay and modified Bessel function
of second kind of type K1(b

√
y). K1(b

√
y) can be further

expressed as K1(b
√
y) = 2b

√
y
√
πe−b

√
yΨ(1.5, 3; 2b

√
y) [45,

eq. (9.210)], and realizing this in (7) and (8) implies that
Proposition 2 mainly depend on e−ay and/or e−b

√
y , and

decrease rapidly as y increases; ii) Proposition 2 also depend
on M tractable rectangular sub-regions, whose value can be
appropriately selected to demonstrate the tightness of the used
approximation, as shown numerically under Section IV.

Remark 5: The derived conditional CDFs F LB
zD (y|X,Z) and

F LB
zE (y|X,Z) in Proposition 2, to our best knowledge, are new

and will be used to evaluate the SOP in Section III-B and the
effective secrecy diversity order in Section III-C.

B. Secrecy Outage Probability (SOP)

The SOP informs us what is the probability that the instanta-
neous secrecy capacity falls below a predefined secrecy target
rate Rs (in bps/Hz). Mathematically, it can be expressed as

P sec
out = Pr

{
max[CD − CE , 0] < Rs

}
. (9)

From (9), it is seen that when CD ≤ CE , the system security is
compromised i.e., P sec

out = 1. Thus, we resort our SOP analysis
for CD > CE, and consequently (9) can be expressed as P sec

out =
Pr
[
CD−CE < Rs

]
. Thus, a lower bound3 of P sec

out is given by

Pout, LB
sec (η) = Pr[Θ < η], (10)

where Θ = 1+zD
1+zE with zD = ΛSD + Λ̃D, zE = ΛSE + Λ̃E ,

Λ̃D = min(ΛSR,ΛRD), Λ̃E = min(ΛSR,ΛRE), and η =
22Rs denotes the secrecy target threshold.

3Note that a lower bound of SOP can be evaluated by applying an upper
bound xy

x+y
< min(x, y) [11], [37], as it provides tight results over a

broad range of SNR (ρ = Q
N0

). The Monte-Carlo simulations presented
in Table II (shown at the top of the page) demonstrate that the difference

between the exact SOP expression
(

i.e., Pr
[

1+ΛSD+
ΛSRΛRD

ΛSR+ΛRD+1

1+ΛSE+
ΛSRΛRE

ΛSR+ΛRE+1

])
and

the approximate SOP expression
(

i.e., Pr
[

1+ΛSD+min(ΛSR,ΛRD)
1+ΛSE+min(ΛSR,ΛRE)

])
, for

various set of involved parameters, is very small.



TABLE III
AUXILIARY FUNCTIONS USED IN SOP EXPRESSION

C1(θ,X) = e−$k1(θ−1)X N1(κ1, κ2) = G0,2:1,0:2,0
2,0:0,1:0,2

(−1,0

−
∣∣−
0

∣∣−
0,0

∣∣κ1, κ2

)
C2(θ,X) = e−$k(θ−1)X N2(β1, β2, β3, β4, β5, β6, κ1, κ2) = G0,2:2,0:2,0

2,0:0,2:0,2

(β1,β2

−
∣∣−
β3,β4

∣∣−
β5,β6

∣∣κ1
α2
RE

α2
SE

, κ2
α2
SR

α2
SE

)
$k = αSDτk ζ1(yl1 ; θ,X) = 2αSR

√
(θ − 1 + θyl1 )XK1

(
2αSR

√
(θ − 1 + θyl1 )X

)
$k1 = αSDτk1 ξ1(y;κ1, κ2, κ3, a1, a2, b1, b2)= 4Xκ1Zκ2yκ3Ka1 (2b1

√
y)Ka2 (2b2

√
y)

µk1(yl1 ; θ,X,Z) = (αSDXτk1 +
(1− τk1)αRDZ)(θ − 1 + θyl1 )

ξ2(y;κ1, κ2, κ3, a1, a2, a3, b1, b2, b3) = 8Xκ1Zκ2yκ3Ka1 (2b1
√
y)Ka2 (2b2

√
y)Ka3 (2b3

√
y)

µk,k1(yl1 ; θ,X,Z) = (αSDXτk +
(1− τk1)αRDZ)(θ − 1 + θyl1 )

ξ3(y;κ1, κ2, κ3, a1, b1) = 2Xκ1Zκ2yκ3Ka1 (2b1
√
y)

ψ1,k1(η, yl1 ) = αSDτk1(η − 1 +
ηyl1 ) + (1/ΩSP )

ζ2(η, yl1 , xl2 ) = 2αSR
√
η − 1 + ηyl1χ1,l1,l2K1(2αSR

√
η − 1 + ηyl1χ1,l1,l2 )

ψ2,k1(η, yl1 ) = αRD(1− τk1)(η−
1 + ηyl1 ) + (1/ΩRP )

ψ1,k(η, yl1 ) = αSDτk(η − 1 + ηyl1 ) + (1/ΩSP )

φk1(η) = $k1(η − 1) + (1/ΩSP ) ξ̄1(y;κ1, κ2, κ3, a1, a2, b1, b2) = 4χ2κ1
1,l1,l2

χ2κ2
2,l1,l3

yκ3Ka1 (2b1
√
y)Ka2 (2b2

√
y)

χ1,l1,l2 =

√
xl2

ψ1,k1(η,yl1 )
ξ̄2(y;κ1, κ2, κ3, a1, a2, a3, b1, b2, b3) = 8χ2κ1

1,l1,l2
χ2κ2

2,l1,l3
yκ3Ka1 (2b1

√
y)Ka2 (2b2

√
y)Ka3 (2b3

√
y)

χ2,l1,l3 =

√
zl3

ψ2,k1(η,yl1 )
ξ̄3(y;κ1, κ2, κ3, a1, b1) = 2χ2κ1

1,l1,l2
χ2κ2

2,l1,l3
yκ3Ka1 (2b1

√
y)

As already observed that zD and zE are dependent due to
the involved common channel gains X and Z, hence, the first
step of deriving the SOP is to derive the CDF of Θ conditioned
on X and Z, as shown in Theorem 1.

Theorem 1: By the use of Proposition 2, the CDF of Θ
conditioned on X and Z, i.e., F LB

Θ (θ|X,Z), can be given as

F LB
Θ (θ|X,Z) =

M∑
k=1

[(
S1(θ|X,Z)− S2(θ|X,Z)

)
−
(
S3(θ|X,Z)− S4(θ|X,Z)

)]
, (11)

where the expressions S1(θ|X,Z) and S3(θ|X,Z) are given in
(12) and (13), respectively, with gl1 =

yl1
((U1+1)LU1+1(yl1 ))2 and

yl1 , (l1 = 1, · · · , U1) are the weights and zeros of U1−order
Gauss-Laguerre polynomial (i.e., LU1(y)) [52, eq. (25.5.45)].

Moreover, S2(θ|X,Z) can be represented by replac-
ing C1(θ,X) by C2(θ,X) and $k1 by $k in (12), and
S4(θ|X,Z) can be expressed by replacing µk1(yl1 ; θ,X,Z)
with µk,k1(yl1 ; θ,X,Z) in (13). The auxiliary functions used
in Si(θ|X,Z), for i ∈ {1, 2, 3, 4} are given in Table III.

Proof: See Appendix C for the detailed analysis.
Remark 6: The conditional CDF obtained in Theorem

1 is dependent on Si(θ|X,Z), for i ∈ {1, 2, 3, 4}, thus
it can be noted that i) S1(θ|X,Z) in (12) is directly

proportional to C1(θ,X) = e−
τk1(θ−1)X

ρΩSD , and the other
involved terms after simplification are observed indepen-
dent of ρ, and S3(θ|X,Z) in (13) is directly proportional

to 1√
ρΩSR

e−
(
Xτk1
ρΩSD

+
(1−τk1)Z

ρΩRD

)
(θ−1+θyl1 )K1

( 2
√

(θ−1+θyl1 )X
√
ρΩSR

)
,

and the other involved terms do not have signifi-

cant impact of ρ, ii) as ρ increases, e−
τk1(θ−1)X

ρΩSD in-
creases and hence S1(θ|X,Z), whereas S3(θ|X,Z) in-
creases because of the dominance of increasing behavior of

e−
(
Xτk1
ρΩSD

+
(1−τk1)Z

ρΩRD

)
(θ−1+θyl1 ) and K1

( 2
√

(θ−1+θyl1 )X
√
ρΩSR

)
with

ρ, iii) S3(θ|X,Z) increases more rapidly than S1(θ|X,Z) for
all values of ρ, while ensuring S1(θ|X,Z) > S3(θ|X,Z)
(likewise, S2(θ|X,Z) > S4(θ|X,Z)). Also, S1(θ|X,Z) >
S2(θ|X,Z) and S3(θ|X,Z) > S4(θ|X,Z) hold true, iv) from
(11), we infer that S1(θ|X,Z)−S2(θ|X,Z) > S3(θ|X,Z)−
S4(θ|X,Z), and hence the conditional CDF decays as ρ
increases, v) the behavior of F LB

Θ (θ|X,Z) for other chan-
nel parameters (ΩSD,ΩSR,ΩRD,ΩSE , and ΩRE) can also
be readily obtained, and vi) in Theorem 1, convergence of
U1−order Gauss-Laguerre series and infinite series is given in
Remark 10 and Remark 11 of Theorem 2, respectively.

Remark 7: It can also be noted that i) the derived conditional
CDF, F LB

Θ (θ|X,Z), in Theorem 1 can achieve its minimum for
S1(θ|X,Z) = S2(θ|X,Z) and S3(θ|X,Z) = S4(θ|X,Z), and
can be verified numerically, and ii) the derived F LB

Θ (θ|X,Z)
will be used to effectively obtain the required unconditional
SOP of the considered system, as presented in Theorem 2.

Theorem 2: By averaging Theorem 1 over X and Z, the
lower bound of the SOP can be expressed as

Pout, LB
sec (η)=

M∑
k=1

[(
S1(η)− S2(η)

)
−
(
S3(η)− S4(η)

)]
, (14)

where S1(η) is given in (15), with gl2 =
xl2

((U2+1)LU2+1(xl2 ))2

and xl2 , (l2 = 1, · · · , U2) are weights and zeros of
U2−order Gauss-Laguerre polynomial (i.e., LU2

(x)), and
gl3 =

zl3
((U3+1)LU3+1(zl3 ))2 and zl3 , (l3 = 1, · · · , U3) are

weights and zeros of U3−order Gauss-Laguerre polynomial
(i.e., LU3

(z)) [52, eq. (25.5.45)]. Moreover, S2(η) in (14) can
be evaluated and represented by replacing $k1 by $k in (15).

Further, S3(η) is presented in (16). And, S4(η) in (14) can
be expressed by replacing ψ1,k1(η, yl1) by ψ1,k(η, yl1) in (16).
The auxiliary functions used in (14) are given in Table III.

Finally, by invoking the results of S1(η), S2(η), S3(η), and
S4(η) into (14), we can obtain the tight lower bound SOP



S1(θ|X,Z) = C1(θ,X)

{
Z

X

α2
RE

α2
SR

N1

($k1θ

α2
SR

,
Z

X

α2
RE

α2
SR

)
+
X

Z

α2
SR

α2
RE

N1

($k1θX

Zα2
RE

,
X

Z

α2
SR

α2
RE

)
−
∞∑
u=0

(−1)u($k1θX)u

u!

×
( M

Xα2
SE

)u+2
[
αSRα

2
REαSEXZ√
M

N2

(
− 3

2
− u,−1

2
− u, 0, 0, 1

2
,−1

2
,
MZ

X
,M
)

+
α2
SRαREαSEX

3
2

√
Z√

M

×N2

(
− 3

2
− u,−1

2
− u, 1

2
,−1

2
, 0, 0,

MZ

X
,M
)

+
αSRαREα

2
SEX

3
2

√
Z

M
N2

(
− 1− u,−1− u, 1

2
,−1

2
,

1

2
,−1

2
,
MZ

X
,M
)]

+
αSE√
M$k1θ

e
1
2

α2
SE

M$k1θW− 1
2 ,0

( α2
SE

M$k1θ

)
+

M∑
j=2

(
αSE√
$k1θ

[
−√τj1e

1
2

α2
SEτj1
$k1θ W− 1

2 ,0

(α2
SEτj1
$k1θ

)
+
√
τje

1
2

α2
SEτj
$k1θ W− 1

2 ,0

(α2
SEτj
$k1θ

)]
+
∞∑
u=0

(−1)u($k1θX)u

u!

[
αSRαRE(1− τj1)

√
Z

Xu+ 1
2 (α2

SEτj1)u+1
N2

(
− 1− u,−1− u, 1

2
,−1

2
,

1

2
,−1

2
,

(1− τj1)Z

τj1X
,

1− τj1
τj1

)
− αSRαRE(1− τj1)

√
Z

Xu+ 1
2 (α2

SEτj)
u+1

N2

(
− 1− u,−1− u, 1

2
,−1

2
,

1

2
,−1

2
,

(1− τj1)Z

τjX
,

1− τj1
τj

)
+
αSRα

2
REZ(1− τj1)

3
2

Xu+1(α2
SEτj1)u+ 3

2

N2

(
− 3

2
− u,−1

2
− u, 0, 0, 1

2
,−1

2
,

(1− τj1)Z

τj1X
,

1− τj1
τj1

)
− αSRα

2
REZ(1− τj1)

3
2

Xu+1(α2
SEτj)

u+ 3
2

N2

(
− 3

2
− u,−1

2
− u, 0, 0, 1

2
,−1

2
,

(1− τj1)Z

τjX
,

1− τj1
τj

)
+
α2
SRαRE

√
Z(1− τj1)

3
2

Xu+ 1
2 (α2

SEτj1)u+ 3
2

N2

(
− 3

2
− u,−1

2
− u, 1

2
,−1

2
, 0, 0,

(1− τj1)Z

τj1X
,

1− τj1
τj1

)
− α2

SRαRE
√
Z(1− τj1)

3
2

Xu+ 1
2 (α2

SEτj)
u+ 3

2

N2

(
− 3

2
− u,−1

2
− u, 1

2
,−1

2
, 0, 0,

(1− τj1)Z

τj1X
,

1− τj1
τj1

)])}
, (12)

S3(θ|X,Z) =

U1∑
l1=1

gl1e−µk1(yl1 ;θ,X,Z)eyl1 ζ1(yl1 ; θ,X)

{
αSRα

2
REξ1

(
yl1 ;

1

2
, 1,

1

2
, 0, 1, αRE

√
Z,αSR

√
X
)

+ α2
SRαRE

× ξ1
(
yl1 ; 1,

1

2
,

1

2
, 1, 0, αRE

√
Z,αSR

√
X
)
−αSRα

2
REαSE√
M

ξ2

(
yl1 ; 1, 1, 1, 1, 0, 1,

αSE
√
X√

M
,αRE

√
Z,αSR

√
X
)
− α2

SRαREαSE√
M

× ξ2
(
yl1 ;

3

2
,

1

2
, 1, 1, 1, 0,

αSE
√
X√

M
,αRE

√
Z,αSR

√
X
)
− αSRαREα

2
SE

M
ξ2

(
yl1 ;

3

2
,

1

2
, 1, 0, 1, 1,

αSE
√
X√

M
,αRE

√
Z,αSR

√
X
)

+
αSRα

2
SE

MαSR
ξ3

(
yl1 ; 1, 0, 0, 0,

αSE
√
X√

M

)
+

M∑
j=2

[
− α2

SEτj1ξ3

(
yl1 ; 1, 0, 0, 0, αSEτ

1
2
j1

√
X
)

+α2
SEτjξ3

(
yl1 ; 1, 0, 0, 0, αSEτ

1
2
j

√
X
)

+ αSRαREα
2
SEτj1(1− τj1)ξ2

(
yl1 ;

3

2
,

1

2
, 1, 0, 1, 1, αSEτ

1
2
j1

√
X,αRE

√
Z(1−τj1)

1
2 , αSR

√
X(1−τj1)

1
2

)
− αSRαREα2

SE(1−τj1)

× τjξ2
(
yl1 ;

3

2
,

1

2
, 1, 0, 1, 1, αSEτ

1
2
j

√
X,αRE(1− τj1)

1
2

√
Z,αSR(1− τj1)

1
2

√
X
)

+ αSRα
2
REαSEτ

1
2
j1(1− τj1)

3
2 ξ2

(
yl1 ; 1, 1, 1

, 1, 0, 1, αSEτ
1
2
j1

√
X,αRE(1− τj1)

1
2

√
Z,αSR(1− τj1)

1
2

√
X
)
− αSRα2

REαSEτ
1
2
j (1− τj1)

3
2 ξ2

(
yl1 ; 1, 1, 1, 1, 0, 1, αSEτ

1
2
j

√
X

,αRE(1−τj1)
1
2

√
Z,αSR(1− τj1)

1
2

√
X
)

+ α2
SRαREαSEτ

1
2
j1(1− τj1)

3
2 ξ2

(
yl1 ;

3

2
,

1

2
, 1, 1, 1, 0, αSEτ

1
2
j1

√
X,αRE(1−τj1)

1
2

√
Z

,αSR(1−τj1)
1
2

√
X
)
−α2

SRαREαSEτ
1
2
j (1−τj1)

3
2 ξ2

(
yl1 ;

3

2
,

1

2
, 1, 1, 1, 0, αSEτ

1
2
j

√
X,αRE(1−τj1)

1
2

√
Z,αSR(1−τj1)

1
2

√
X
)]}

,

(13)

expression over mixed Rayleigh and double-Rayleigh fading.
Proof: See Appendix D for the detailed proof.

Remark 8: The SOP analysis presented in Theorem 2 over
mixed Rayleigh and double-Rayleigh fading channels has not
yet been analyzed in the existing literature. It is worth noting
that i) (15) and (16) look complex, however, by observing

closely we can infer that they mainly involve powers, expo-
nentials, modified Bessel functions of second kind, Whittaker-
W functions, and extended generalized bi-variate Meijer-G
functions,4 consisting of system/channel parameters, such as,

4It can readily be implemented efficiently using Mathematica computation
software package via [53].



S1(η) =
1

ΩSPφk1(η)

αSE√
$k1η

[
1√
M

e
1
2
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SE

M$k1ηW− 1
2 ,0

( α2
SE

M$k1η
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+
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SEτj1
$k1η W− 1

2 ,0

(α2
SEτj1
$k1η

)
+
√
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√
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∞∑
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Q, N0, ΩSD,ΩSR,ΩRD,ΩSP ,ΩRP ,ΩSE , and ΩRE , ii) for
all the values of system/channel parameters, we have S1(η)−
S2(η) > S3(η)−S4(η), where the increasing/decreasing trend
of Si(η), for i ∈ {1, 2, 3, 4} will decide the SOP behavior,
as shown numerically in Section IV, and iii) the minimum
SOP, i.e., Pout, LB

sec (η) = 0 can be theoretically attained when
S1(η) = S2(η) and S3(η) = S4(η), which can be obtained
numerically for the involved parameters in Section IV.

Remark 9: From Theorem 2, we can infer the following SOP
performance trends: i) the SOP improves as ΩSD,ΩSR, and
ΩRD increase, ii) the improvement in eavesdropper channel
quality leads to a poorer SOP performance, iii) the SOP per-
formance decreases when the strength of interference channels
(i.e., ΩSP and ΩRP ) increase, and iv) the SOP saturates as ρ
increases, because ρ at both D and E increase simultaneously.
These trends are further verified numerically in Section IV.

Remark 10: The SOP expression in Theorem 2
consists of U1, U2, and U3 order Gauss-Laguerre series
expansions, which are convergent and make them of
practical use. For instance, consider a term from (16), i.e.,
Z =

∑U1

l1=1

∑U2

l2=1

∑U3

l3=1
gl1gl2gl3ζ2(η,yl1 ,xl2 )eyl1αSRα2

RE

ΩSPΩRPψ1,k1(η,yl1 )ψ2,k1(η,yl1 )

× ξ̄1(yl1 ; 1
2 , 1,

1
2 , 0, 1, αREχ2,l1,l3 , αSRχ1,l1,l2), where

ζ2(η, yl1 , xl2) and ξ̄1(y;κ1, κ2, κ3, a1, a2, b1, b2) given in
Table III consist of v-th order modified Bessel functions of
second kind (i.e., Kv(x)), and Kv(x) can also be expressed
as Kv(x) =

√
πe−x(2x)vΨ(v + 0.5, 1 + 2v; 2x) [45, eq.

(9.238)]. Realizing this in Z indicates that due to the presence
of exponential functions, Z converges rapidly as U1, U2, and
U3 increase and only limited values are sufficient to get a
satisfactory accuracy, as shown numerically in Section IV.
Likewise, convergence of other terms can also be shown.

Remark 11: The Sj(η), for j ∈ {1, 2, 3, 4} in (14) con-
sist infinite summations. We test the convergence as fol-
lows. For instance, consider a term from S1(η) in (15), i.e.,
Mu =

($k1ηxl2 )uMu+2

u!α2u+3
SE

αSRα
2
REΩRP zl3φk1(η)√

M
N2(− 3

2−u,−
1
2−

u, 0, 0, 1
2 ,−

1
2 ,

Mφk1(η)ΩRP zl3
xl2

,M), which is further expressed

as Mu = G0,2:2,0:2,0
2,0:0,2:0,2

(− 3
2−u,−

1
2−u

−

∣∣−
0,0

∣∣−
1
2 ,−

1
2

∣∣ε1, ε2)
×

(M$k1η)uxu+1
l2

ε1ε2

u!
√
Mα2u−1

SE

, where ε1 =
Mφk1(η)zl3ΩRPα

2
RE

xl2α
2
SE

and

ε2 =
Mα2

SR

α2
SE

. Then, the series expansion of this term
in (15) is given by

∑∞
u=0(−1)uMu. It is well known

fact that the extended generalized bi-variate Meijer-G func-
tion, Gm1,n1 : n2,m2 : n3,m3

p1,q1 : p2,q2 : p3,q3

(
x, y
∣∣a1,··· ,ap1

b1,··· ,bq1

∣∣c1,··· ,cp2

d1,··· ,dq2

∣∣e1,··· ,ep3

f1,··· ,fq3

)
,

can be defined in terms of double Mellin-Barnes type in-
tegrals, and converges if the following conditions satisfied
[54], i.e., i) p1 + p2 + q1 + q2 < 2(n1 + n2 + m2), ii)
p1 + p3 + q1 + q3 < 2(n1 + n3 + m3), iii) | arg(x)| <
π(n1 +n2 +m2− (p1 + p2 + q1 + q2)/2), and iv) | arg(y)| <
π(n1 + n3 +m3 − (p1 + p3 + q1 + q3)/2). Thus, using ratio
test,5 it can be shown that the series is convergent as
lim
u→∞

Mu+1

Mu

5For a given infinite series
∑∞
u=0 fu, let L := lim

u→∞

∣∣∣ fu+1

fu

∣∣∣. As per [55],
the series is convergent if L < 1, divergent if L > 1, and inclusive if L = 1.

= lim
u→∞

M$k1ηxl2
(u+1)α2

SE

G0,2:2,0:2,0
2,0:0,2:0,2

(− 3
2
−u−1,− 1

2
−u−1

−
|−0,0|

−
1
2
,− 1
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|ε1,ε2
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(− 3
2
−u,− 1
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−u
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−
1
2
,− 1

2

|ε1,ε2
)

< lim
u→∞

M$k1ηxl2
(u+1)α2

SE
= 0.

We can infer that the infinite summations in Theorem 2 are
convergent and thus making them practical and tractable to
use. The convergence is numerically shown in Section IV.

C. Effective Secrecy Diversity Order

To extract some more meaningful information about the
system’s secrecy diversity order, this section investigates the
effective secrecy diversity order of the considered system
under mixed Rayleigh and double-Rayleigh fading, which to
the best of authors’ knowledge is yet to be studied in the
literature. Therefore, next we investigate the effective secrecy
diversity order by analyzing the asymptotic SOP behavior.
Two scenarios6 pertaining to the wiretap channels, i.e., fixed
wiretap average channel gains and varying wiretap average
channel gains may arise, which are described as follows.

1) In the first scenario, the average channel gains related to
the main links go to infinity, i.e., ΩSR → ∞,ΩRD →
∞, and ΩSD → ∞, and the average channel gains
corresponding to wiretap channels i.e., ΩSE and ΩRE
are fixed. The asymptotic analysis under this scenario
will be helpful in understanding the system secrecy
diversity order when the quality of the main channels
is much better than the quality of the wiretap channels.

2) In the second scenario, both the main and wiretap
channels go to infinity, i.e., ΩSR → ∞,ΩRD → ∞,
ΩSD →∞, ΩSE →∞, and ΩRE →∞. This scenario
is not considered in this paper, as it is obvious that in this
scenario, perfect eavesdropping can be achieved, which
results into a zero secrecy diversity order.

In what follows, we focus on the first scenario, when Ωij →
∞, for {ij} ∈ {SR,RD,SD}, while ΩSE and ΩRE are fixed.
Under this scenario, to evaluate the asymptotic SOP expression
in the high-Ωij regime, we first need to obtain the asymptotic
expression of the CDF of Θ conditioned on X and Z given
in (24) under high-Ωij regime, which is given in Theorem 3.

Theorem 3: By simplifying (5), (6), (23), and (24) under
high-Ωij regime, for {ij} ∈ {SR,RD,SD}, the asymptotic
CDF of Θ conditioned on X and Z in the high-Ωij regime,
keeping ΩSE and ΩRE as fixed, can be expressed as

F LB
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. (17)

Proof: See Appendix E for the detailed proof.

6Note that the realization of asymptotic SOP in the high ρ = Q
N0

regime
also results into a zero secrecy diversity order, since ρ at both D and E are
increased simultaneously.



Remark 12: Note that i) Theorem 3 does not involve any
infinite summations and complicated mathematical functions,
which makes it tractable for practical use, and ii) the desired
asymptotic SOP can be obtained by averaging Theorem 3 over
X and Z, as given in Theorem 4, which provides various key
insights into the system behavior as shown in Remarks 13-15.

Theorem 4: The asymptotic lower bound SOP expression at
high-Ωij regime, for {ij} ∈ {SR,RD,SD}, can be given as

P sec, LB
out, asy(η) = GcΩ−2, (18)

where ΩSR = ΩRD = ΩSD = Ω and Gc is the secrecy array
gain given by

Gc =
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)
, (19)

with T (β) =
∫∞

0
1
w e−

w
β dw, which cannot be derived in closed

form, however, it can be obtained numerically by the help of
Mathematica or Matlab computation software packages.

Proof: See Appendix F for the detailed explanation.
Remark 13: It is evident from Theorem 4 that i) the system

can achieve a secrecy diversity order of GD = 2, which is
independent of the parameters related to E and PU receivers,
ii) P sec, LB

out, asy(η) is directly proportional to Gc, which implies that
the asymptotic SOP is proportional to secrecy target rate, i.e.,
η = 22Rs , and increases with the higher values of Rs, as
also reported in [15], [19], and [22], and iii) the utilization
of S → D direct link gives significant benefits in system’s
secrecy diversity order, which is consistent with the findings
reported in [10], [19], and [37].

Remark 14: Fig. 2 shows the effective secrecy diversity
order behavior when Ω tends to infinity. It is observed from
Fig. 2 that the secrecy diversity order convergence7 slows
due to involved double-Rayleigh fading channels. The slow
convergence behavior over cascaded fading channels is also
proved in [56]. Mathematically, the secrecy diversity order can
be defined as GD = − lim

Ω→∞

logP sec, LB
out, asy(η)

log Ω . Now, using this and

(18), we can compute the secrecy diversity order as

GD = lim
Ω→∞

(
2− log Gc

log Ω

)
(20)

= 2. (21)

We can infer that the term inside the limit in (20) converges
to (21) very slowly as also shown in Fig. 2.

7Note that under path-loss channel modeling, the average power gains
of all channels can be denoted as Ωı = d−νı , for {ı} =
{SR,RD, SD, SE,RE, SP,RP}, with path-loss exponent ν = 4. It
indicates that, Ωı → ∞ in the above analysis correspond to dı → 0,
which implies that the nodes ı and  are located close to each other. Whereas,
Ωı → 0 correspond to dı →∞, which indicates that the node ı is located
far away from the node . Therefore, the convergence behavior of the secrecy
diversity order remains same under such a path-loss modeling, as the average
power gains of the channels are directly related with the nodes position.
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Fig. 2. Effective secrecy diversity order for the considered system.

Remark 15: From Fig. 2, it can be seen that the effective
secrecy diversity order convergence further slows down when
eavesdropper channel condition improves i.e., ΩSE and ΩRE
increases, and vice versa. The same observation also holds
when ΩSP and ΩRP increases. However, the secrecy diversity
order of 2 can be achievable in all cases.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results to testify the
accuracy of our derived analytical results via Monte-Carlo sim-
ulations (averaged over 106 independent trials). For numerical
investigations, we assume appropriate values of the orders of
involved Gauss-Laguerre polynomial as U1 = U2 = U3 = 75.
The SOP expression in (14) consists infinite series, that
converges after a few terms (u = 11) to get a precise result.
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Fig. 3. SOP versus ρ for different secrecy threshold Rs.

Fig. 3 depicts the SOP performance of the considered
system versus ρ , Q

N0
for various values of M and Rs, when

Ωı = 0 dB for {ı} ∈ {SR, SE, SP, SD,RE,RP,RD}.
From Fig. 3, we can see that the analytical results for SOP in
(14) match well with the simulation results when M ≥ 10 over
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Fig. 4. Impact of primary user receiver on the SOP performance.

the entire SNR regime, and hence validating the correctness
of our derived analytical SOP expression. It also verifies the
accuracy of rectangular sub-regions approach [51] used to
evaluate the SOP, as also shown in [37]. We can further
observe that the SOP increases with the increase in Rs, which
is generally reported in [15], [19], and [22]. This is because of
the reason that a higher power will be required to achieve the
more stringent secrecy rate threshold constraints. Moreover,
we can observe from Fig. 3 that the SOP curves exhibit secrecy
floor phenomenon, irrespective of Rs, as reported in [19]. The
reason is that in this case even E is able to extract the benefits
of increased transmit SNR alongwith D.

In Fig. 4, we demonstrate the impact of PU (assuming
ΩSP = ΩRP = ΩI ) on the SOP performance for various
values of ΩSD, ΩSE , and ρ, when Rs = 0.1 bps/Hz, M = 10,
and ΩSR = ΩRD = 10 dB. From Fig. 4, we can see that the
SOP increases as ΩI increases, irrespective of ΩSD, ΩSE ,
and ρ. This is owing to the reason that the powers PS and
PR decrease with the increase in ΩI , which is in coherence
with the observation drawn in [27], [41]. It is further seen that
the SOP increases with the increase in ΩSE , since increasing
ΩSE can improve the channel quality of S → E direct link,
and hence enhances E’s ability to intercept the information. In
addition, the SOP decreases with the increase in ΩSD owing
to a better legitimate S → D channel quality. The above two
observations show that the direct links have significant impact
on system’s secrecy performance, and should not be neglected
while analyzing PHY-security, which is also aligned with the
findings reported in [19], [22], and [23]. Moreover, it is seen
from Fig. 4 that the SOP performance shows an improvement
with the increased ρ in the medium-to-high ΩI regime, which
is consistent with the observation shown in [25].

Fig. 5 shows the SOP performance versus Ω (where ΩSR =
ΩRD = ΩSD = Ω) for various values of ΩSE and ΩRE , when
Rs = 0.5 bps/Hz, M = 10, ΩSP = ΩRP = 0 dB, and ρ = 0
dB. It can be seen from Fig. 5 that the SOP decreases with the
improvement in Ω, for all values of ΩSE and ΩRE . This is
due to the fact that the legitimate channel quality improves
continuously with an increase in Ω, while the quality of
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Fig. 5. SOP versus Ω for various values of ΩSE and ΩRE .
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Fig. 6. Impact of ΩSD on the SOP performance.

eavesdropper channels remains same due to the fixed ΩSE and
ΩRE values. Such an observation with direct links is consistent
with the findings reported in PHY-security literature for non-
cognitive framework [10] and [37] and cognitive scenario [19],
[22]. We can also observe that the SOP performance degrades
when ΩSE or ΩRE increases. For instance, when Ω = 20 dB,
the SOP is 0.00234656 for (ΩSE ,ΩRE) = (0, 0) dB, whereas
it is 0.419791 and 0.0583698 for (ΩSE ,ΩRE) = (10, 0) dB
and (ΩSE ,ΩRE) = (0, 5) dB, respectively. Furthermore, the
SOP performance degrades significantly if ΩSE and ΩRE
increase jointly, i.e., ΩSE = ΩRE = 10 dB.

Fig. 6 illustrates the performance of SOP versus average
channel gain ΩSD of the legitimate direct link for various fixed
values of ΩSE , ΩRE , ΩRD, when Rs = 0.5 bps/Hz, M = 10,
ΩSR = 10 dB, ΩSP = ΩRP = 0 dB, and ρ = 10 dB. From the
plots, we can observe that the SOP performance improves as
ΩSD increases, irrespective of the other parameters involved.
This is due to the fact that an increase in ΩSD strengthens the
capacity pertaining to the legitimate S → D channel, which
is aligned with the findings shown in [22], [23]. Further, we
can observe that the SOP decreases with the increase in ΩRD



because of the better quality of the corresponding legitimate
R→ D link quality. Thus, as the quality of either/both S → D
link and R → D link improves, the SOP performance will
further improve. Also, it is seen that the SOP performance
degrades when ΩSE and/or ΩRE increases.
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Fig. 7. SOP performance comparison from the direct links perspective.

Fig. 7 shows the performance of SOP versus average
channel gains (ΩSR = ΩRD) for the considered system, when
Rs = 0.5 bps/Hz, M = 10, ΩRE = 10 dB, ΩSP = ΩRP = 0
dB, and ρ = 10 dB. From Fig. 7, we can see that the SOP
performance of the considered system improves as the quality
of S → R and R→ D channels improves, irrespective of ΩSD
and ΩSE . This gain in the secrecy performance is intuitive as
an increase in ΩRD brings a consistent gain to the capacity
of legitimate relay channel R → D, while ΩRE is fixed and
thus, limiting the capacity of the wiretap relay link R → E.
Moreover, we can see that SOP performance increases as ΩSD
increases, while an increase in ΩSE can decrease the SOP
performance. This is because of the reason that a higher ΩSD
(ΩSE) corresponds to a better S → D (S → E) channel
capacity. Also, in Fig. 7, we consider four scenarios taken
from our proposed system namely: 1) when both S → E and
S → D are present (i.e., our considered system setup), 2)
when S → E link is absent, 3) when S → D link is absent,
and 4) when both S → E and S → D links are absent. We
can observe that the SOP performance for scenario 2 (S → E
link absent) outperforms the proposed system, whereas the
proposed system (scenario 1) outperforms scenario 3 (S → D
link absent). Such behavior is expected as the presence of
S → E link strengthens the wiretap link capacity, while the
presence of S → D link strengthens the main link capacity.
Furthermore, the SOP performance of scenario 4 (S → E and
S → D links absent) lies in between scenario 2 and scenario 3.
Moreover, the SOP performance of scenario 1 performs poorer
than the scenario 4 when the average channel gain of S → E
link is stronger than the average channel gain of S → D link,
and outperforms when the quality of S → D link is superior
than the quality of S → E link. Finally, we can conclude
that the involvement of direct links have significant impact on
system’s SOP performance, as also reported in [19] and [22].

V. CONCLUSIONS

We investigated the secrecy performance of a secure un-
derlay cooperative cognitive relay network, wherein a sec-
ondary source vehicle communicates with a fixed secondary
infrastructure terminal via a direct link and with the help of
a secondary AF relay vehicle in the presence of a secondary
eavesdropper vehicle. We assumed that the eavesdropper could
intercept the information from both the source and relay ter-
minals, and also the secondary transmission occurs under the
peak interference constraints to the primary user. Considering
double-Rayleigh fading for V2V links and Rayleigh fading for
V2I links, we deduced a novel tight lower bound expression
for the SOP. We further presented an effective system’s secrecy
diversity order analysis, from which a secrecy diversity order
of 2 can be achieved but with slow convergence rate due to the
availability of double-Rayleigh fading channels. Furthermore,
we verified our analytical results via simulations and showed
the impacts of channel conditions and interference constraints
on the SOP performance. Through our analysis, we also
demonstrated that S → D and S → E direct links have
considerable impacts on system’s secrecy performance.

Future work will focus on the study of mitigating the
eavesdropping effects by employing cooperative jamming or
artificial noise in such networks. Also, the study of distributed
beamforming and opportunistic relaying schemes for security
enhancement in such networks is another topic of interest.

APPENDIX A
PROOF OF PROPOSITION 1

The conditioned CDF of Λ̃i, for i ∈ {D,E}, is given by

FΛ̃i
(y|X,Z) = Pr

[
min(ΛSR,ΛRi) < y|X,Z

]
=FΛSR(y|X)+FΛRi(y|Z)−FΛSR(y|X)FΛRi(y|Z). (22)

To obtain (22), we require the conditional CDFs FΛSR(y|X),
FΛRD (y|Z), and FΛRE (y|Z). The CDF of ΛSR , ρ|hSR|2

X

conditioned on X can be given as FΛSR(y|X) = Pr
[ρ|hSR|2

X <

y
]

= F|hSR|2
(
yX
ρ

)
= 1 − 2αSR

√
yXK1

(
2αSR

√
yX
)
. Like-

wise, we can get the conditional CDFs of ΛRD , ρ|hRD|2
Z

and ΛRE , ρ|hRE |2
Z as FΛRD (y|Z) = 1 − e−αRDyZ , and

FΛRE (y|Z) = 1− 2αRE
√
yZK1

(
2αRE

√
yZ
)
, respectively.

Finally, invoking the above derived conditional CDFs
into (22), and after some simplifications, we can obtain
FΛ̃D

(y|X,Z) in (5) and FΛ̃E
(y|X,Z) in (6).

APPENDIX B
PROOF OF PROPOSITION 2

Using the tight staircase approximation approach [51], we
can express F LB

zı (y|X,Z), for ı ∈ {D,E} in (4) as

F LB
zı (y|X,Z)=

M∑
k=1

∫ τky

τk1y

fΛSı(w|X)dw

∫ y(1−τk1)

0

fΛ̃ı
(v|X,Z)dv

=
M∑
k=1

[(
FΛSı(τky|X)− FΛSD (τk1y|X)

)
× FΛ̃ı

(
(1− τk1)y|X,Z

)]
. (23)



From (23), the conditional CDF F LB
zD (y|X,Z) can be obtained

by invoking the CDFs FΛSD (y|X) and FΛ̃D
(y|X,Z), and after

some simplifications, as given in (7). Likewise, we can express
F LB
zE (y|X,Z), as presented in (8).

APPENDIX C
PROOF OF THEOREM 1

The CDF of Θ conditioned on X and Z can be given by

F LB
Θ (θ|X,Z)=

∫ ∞
0

F LB
zD (θ −1+ θy|X,Z)fLB

zE (y|X,Z)dy, (24)

which can be further expressed by invoking (7) as

F LB
Θ (θ|X,Z) =

M∑
k=1

{∫ ∞
0

C1(θ,X)e−$k1θyXfLB
zE (y|X,Z)dy

−
∫ ∞

0

C2(θ,X)e−$kθyXfLB
zE (y|X,Z)dy

−
∫ ∞

0

e−µk1(y;θ,X,Z)ζ1(y; θ,X)fLB
zE (y|X,Z)dy

+

∫ ∞
0

e−µk,k1(y;θ,X,Z)ζ1(y; θ,X)fLB
zE (y|X,Z)dy

}
. (25)

To evaluate (25), we first require the conditional PDF
fLB
zE (y|X,Z), which can be obtained by differentiating (8)

with respect to y by the use of ∂n

∂zn [zv/2Kv(a
√
z)] =

(−a/2)nz(v−n)/2Kv−n(a
√
z) [57, eq. (1.14.1.4)], as

fLB
zE (y|X,Z)=U1(y|X,Z)− U2(y|X,Z)+ U3(y|X,Z)+

M∑
j=2

×
[
U4(y|X,Z)+ U5(y|X,Z)+ U6(y|X,Z)+ U7(y|X,Z)

]
, (26)

where

U1(y|X,Z)=αSRα
2
REξ1

(
y;

1

2
, 1,

1

2
, 0, 1, αRE

√
Z,αSR

√
X
)

+ α2
SRαREξ1

(
y; 1,

1

2
,

1

2
, 1, 0, αRE

√
Z,αSR

√
X
)
, (27)

U2(y|X,Z) =
αSRα

2
REαSE√
M

ξ2

(
y; 1, 1, 1, 1, 0, 1,

αSE
√
X√

M

,αRE
√
Z,αSR

√
X
)

+
α2
SRαREαSE√

M
ξ2

(
y;

3

2
,

1

2
, 1, 1, 1, 0

,
αSE
√
X√

M
,αRE

√
Z,αSR

√
X
)

+
αSRαREα

2
SE

M

× ξ2
(
y;

3

2
,

1

2
, 1, 0, 1, 1,

αSE
√
X√

M
,αRE

√
Z,αSR

√
X
)
, (28)

U3(y|X,Z) =
1

M
α2
SEξ3

(
y; 1, 0, 0, 0,

αSE
√
X√

M

)
, (29)

U4(y|X,Z) = −α2
SEτj1ξ3

(
y; 1, 0, 0, 0, αSE

√
τj1X

)
+ α2

SEτjξ3
(
y; 1, 0, 0, 0, αSE

√
τjX

)
, (30)

U5(y|X,Z) = αSRαREα
2
SEτj1(1− τj1)ξ2

(
y;

3

2
,

1

2
, 1, 0

, 1, 1, αSE
√
τj1X,αRE

√
(1− τj1)Z,αSR

√
(1− τj1)X

)
− αSRαREα2

SEτj(1− τj1)ξ2

(
y;

3

2
,

1

2
, 1, 0, 1, 1

, αSE
√
τjX,αRE

√
(1− τj1)Z,αSR

√
(1− τj1)X

)
, (31)

(32)

U6(y|X,Z) = αSRα
2
REαSE

√
τj1(1− τj1)3ξ2

(
y; 1, 1, 1, 1

, 0, 1, αSE
√
τj1X,αRE

√
(1− τj1)Z,αSR

√
(1− τj1)X

)
− αSRα2

REαSE

√
τj(1− τj1)3ξ2

(
y; 1, 1, 1, 1, 0, 1

, αSE
√
τjX,αRE

√
(1−τj1)Z,αSR

√
(1− τj1)X

)
, (33)

U7(y|X,Z) = α2
SRαREαSE

√
τj1(1− τj1)3ξ2

(
y;

3

2
,

1

2
, 1

, 1, 1, 0, αSE
√
τj1X,αRE

√
(1−τj1)Z,αSR

√
(1−τj1)X

)
− α2

SRαREαSE

√
τj(1− τj1)3ξ2

(
y;

3

2
,

1

2
, 1, 1, 1, 0

, αSE
√
τjX,αRE

√
(1−τj1)Z,αSR

√
(1−τj1)X

)
. (34)

The first integral (say S1(θ|X,Z)) in (25) is given via (26) as

S1(θ|X,Z) = C1(θ,X)

[ ∫ ∞
0

e−$k1θyXU1(y|X,Z)dy

−
∫ ∞

0

e−$k1θyXU2(y|X,Z)dy +

∫ ∞
0

e−$k1θyXU3(y|X,Z)dy

+
M∑
j=2

∫ ∞
0

e−$k1θyX
(
U4(y|X,Z) + U5(y|X,Z)

+ U6(y|X,Z) + U7(y|X,Z)
)
dy

]
. (35)

Using (27), the first integral (say S(a)
1 (θ|X,Z)) in (35)

can be evaluated by applying e−x = G1,0
0,1(x|−0 ) [46, eq.

(01.03.26.0004.01)] and Kv(
√
x) = 1

2G
2,0
0,2

(
x
4

∣∣v
2 ,
−v
2

)
[46, eq.

(03.04.26.0009.01)], and via [46, eq. (07.34.21.0081.01)] as

S(a)
1 (θ|X,Z) =

Z

X

(αRE
αSR

)2

N1

(
$k1θ

α2
SR

,
Z

X

(αRE
αSR

)2
)

+
X

Z

(αSR
αRE

)2

N1

(
X$k1θ

Zα2
RE

,
X

Z

(αSR
αRE

)2
)
. (36)

Invoking (28) into (35), the second integral (say
S(b)

1 (θ|X,Z)) can be simplified using e−ax =
∑∞
n=0

(−ax)n

n!
[45, eq. (1.211.1)], [46, eq. (03.04.26.0009.01)], and [46, eq.
(07.34.21.0081.01)] as

S(b)
1 (θ|X,Z) =

∞∑
u=0

(−1)u($k1θ)
u

u!

Mu+ 3
2

√
Xα2u+3

SE

αSRαRE

×
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ZαRE√
X
N2
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− 3

2
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2
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2
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2
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MZ

X
,M
)

+
√
Z

× αSRN2

(
− 3

2
− u,−1

2
− u, 1

2
,−1

2
, 0, 0,

MZ

X
,M
)

+

√
Z√
M

×αSEN2

(
− 1− u,−1− u, 1

2
,−1

2
,

1

2
,−1

2
,
MZ

X
,M
)]
. (37)

Moreover, the third integral (say S(c)
1 (θ|X,Z)) of (35) can

be evaluated by using (29) and [45, eq. (6.614.4)], as

S(c)
1 (θ|X,Z) =

αSE√
M$k1θ

e
1
2

α2
SE

M$k1θW− 1
2 ,0

( α2
SE

M$k1θ

)
. (38)



Finally, the fourth integral (say S(d)
1 (θ|X,Z)) of (35) can

be re-written as

S(d)
1 (θ|X,Z) =

∫ ∞
0

e−$k1θyXU4(y|X,Z)dy

+

∫ ∞
0

e−$k1θyXU5(y|X,Z)dy +

∫ ∞
0

e−$k1θyXU6(y|X,Z)dy

+

∫ ∞
0

e−$k1θyXU7(y|X,Z)dy. (39)

By invoking U4(y|X,Z) from (30) into the first integral (say
S(d,1)

1 (θ|X,Z)) of (39), and simplifying the required integrals
via [45, eq. (6.614.4)], we can express S(d,1)

1 (θ|X,Z) as

S(d,1)
1 (θ|X,Z) =

αSE√
$k1θ

[
−√τj1e

1
2

α2
SEτj1
$k1θ W− 1

2 ,0

(α2
SEτj1
$k1θ

)
+
√
τje

1
2

α2
SEτj
$k1θ W− 1

2 ,0

(α2
SEτj
$k1θ

)]
. (40)

By invoking (31) into the second integral (say S(d,2)
1 (θ|X,Z))

of (39), and simplifying the resultant integrals via same
method as used to obtain (37), we can get S(d,2)

1 (θ|X,Z) as

S(d,2)
1 (θ|X,Z) =

∞∑
u=0

(−1)u($k1θ)
u

u!

αSRαRE
√
Z

√
Xα

2(u+1)
SE

(1− τj1)
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1

τu+1
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2
,

1

2
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2
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− 1

τu+1
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2
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2
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τjX
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1− τj1
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. (41)

Likewise, we can simplify the third and fourth integral terms
(say S(d,3)

1 (θ|X,Z) and S(d,4)
1 (θ|X,Z)) of (39). Hence, invok-

ing the solutions of S(d,1)
1 (θ), S(d,2)

1 (θ|X,Z), S(d,3)
1 (θ|X,Z),

and S(d,4)
1 (θ|X,Z) into (39), we can get S(d)

1 (θ|X,Z). Conse-
quently, using S(a)

1 (θ|X,Z), S(b)
1 (θ|X,Z), S(c)

1 (θ|X,Z), and
S(d)

1 (θ|X,Z), we can obtain S1(θ|X,Z), as given in (12).
Now, following the same steps as used to obtain (12), the

second integral (say S2(θ|X,Z)) in (25) can be evaluated by
replacing C1(θ,X) by C2(θ,X) and $k1 by $k in (12).

Further, invoking (26) into the third integral (say
S3(θ|X,Z)) of (25), it is seen that the integrals associated
with S3(θ|X,Z) are mainly of the following forms∫ ∞

0

e−c1yyq
√
c2 + c3yK1(c4

√
y(c2 + c3y))K1(c4

√
y)

×K0(c5
√
y)dy, (42)∫ ∞

0

e−c1yyq
√
c2 + c3yK1(c4

√
y(c2 + c3y))K1(c6

√
y)

×K0

(
c7
√
y)K1(c8

√
y)dy, (43)∫ ∞

0

e−c1yyq
√
c2 + c3yK1

(
c4
√
y(c2 + c3y))K0

(
c9
√
y)dy, (44)

whose exact solutions are intractable. Therefore, we first
multiply and divide S3(θ|X,Z) of (25) with ey , and then
simplifying it by applying the Gauss-Laguerre method [52] to
obtain (13). Also, the fourth integral (say S4(θ|X,Z)) in (25)

can be evaluated and expressed by replacing µk(y; θ,X,Z)
with µk,k1(y; θ,X,Z) in (13).

Lastly, invoking the solutions of S1(θ|X,Z), S2(θ|X,Z),
S3(θ|X,Z), and S4(θ|X,Z) into (25), we can get the tight
lower bound expression of F LB

Θ (θ|X,Z), as presented in (11).

APPENDIX D
PROOF OF THEOREM 2

By averaging (11) over X and Z alongwith the PDFs
fX(x) = 1

ΩSP
e−

x
ΩSP and fZ(z) = 1

ΩRP
e−

z
ΩRP , the lower

bound of the SOP, Pout, LB
sec (η), can be expressed as

Pout, LB
sec (η)

=
M∑
k=1

[
1

ΩSPΩRP

∫ ∞
0

∫ ∞
0

S1(η|x, z)e−
x

ΩSP e−
z

ΩRP dxdz︸ ︷︷ ︸
,S1(η)

− 1

ΩSPΩRP

∫ ∞
0

∫ ∞
0

S2(η|x, z)e−
x

ΩSP e−
z

ΩRP dxdz︸ ︷︷ ︸
,S2(η)

− 1

ΩSPΩRP

∫ ∞
0

∫ ∞
0

S3(η|x, z)e−
x

ΩSP e−
z

ΩRP dxdz︸ ︷︷ ︸
,S3(η)

+
1

ΩSPΩRP

∫ ∞
0

∫ ∞
0

S4(η|x, z)e−
x

ΩSP e−
z

ΩRP dxdz︸ ︷︷ ︸
,S4(η)

]
. (45)

To simplify S1(η) in (45), we first invoke S1(η|X,Z) from
(12) into (45), and then carried out the required integration, it
is observed that the solution of most of the integrals in S1(η)
of (45) is intractable due to the involvement of X and Z in
the complicated arguments of extended generalized bi-variate
Meijer-G functions. To simplify, we apply change of variables
φk1(η)x = x and z

ΩRP
= z with the Gauss-Laguerre method

[52], and consequently, we can obtain S1(η) as given in (15).
Now, using the steps as used to obtain (15), we can evaluate

and represent S2(η) in (45) by replacing $k1 by $k in (15).
Further, the solution of S3(η) in (45) is intractable. To make

analysis simple, we evaluate S3(η) in (45) by first using the
change of variables ψ1,k1(η, yl1)x = x and ψ2,k1(η, yl1)z = z,
and then using Gauss-Laguerre method [52], as shown in (16).

Moreover, S4(η) in (45) can be simplified by following the
same method as used to obtain (16), and can be represented
by replacing ψ1,k1(η, yl1) by ψ1,k(η, yl1) in (16).

APPENDIX E
PROOF OF THEOREM 3

By applying the approximations xKv(x) ≈
x→0

1 and e−x ≈
x→0

1 − x into (5), we can obtain FΛ̃D
(y|Z) ' Zy

ρΩRD
. Further,

invoking FΛSD (y|X) = 1− e−
yX

ρΩSD with the use of e−x ≈
x→0

1−x alongwith the approximation of FΛ̃D
(y|Z), and keeping

M = 1 into (23), we can approximate F LB
zD (y|X,Z) as

F LB
zD (y|X,Z) ' ZXy2

ρ2ΩRDΩSD
. (46)



Moreover, using xKv(x) ≈
x→0

1 for the main links, we can

express the conditioned CDF FΛ̃E
(y|Z) in (6) as

FΛ̃E
(y|Z) ' 1− 2

√
yZ

ρΩ2
RE

K1

(
2

√
yZ

ρΩ2
RE

)
. (47)

Invoking (47) and FΛSE (y|X) = 1− 2
√

yX
ρΩ2

SE
K1

(
2
√

yX
ρΩ2

SE

)
into (23) with M = 1, and then differentiating with respect to
y via [57, eq. (1.14.1.4)], we can get fLB

zE (y|X,Z) as

fLB
zE (y|X,Z) ' 2X

ρΩ2
SE

K0

(
2

√
yX

ρΩ2
SE

)[
1− 2

√
yZ

ρΩ2
RE

×K1

(
2

√
yZ

ρΩ2
RE

)]
+

2Z

ρΩ2
RE

K0

(
2

√
yZ

ρΩ2
RE

)

×
[
1− 2

√
yX

ρΩ2
SE

K1

(
2

√
yX

ρΩ2
SE

)]
. (48)

Furthermore, using the approximation 1+x
1+y '

x
y [11], [50],

we can re-express (24) at high-Ωij regime, for {ij} ∈
{SR,RD,SD}, as

F LB
Θ (θ|X,Z) '

∫ ∞
0

F LB
zD (θy|X,Z)fLB

zE (y|X,Z)dy. (49)

By substituting F LB
zD (ηy|X,Z) from (46) and fLB

zE (y|X,Z)
from (48) into (49), we can express (49) as

F LB
Θ (θ|X,Z) ' 2X2Zη2

ρ3ΩRDΩSDΩ2
SE

I1 +
2XZ2η2

ρ3ΩRDΩSDΩ2
RE

I2

− 4X2Z
3
2 η2

ρ
7
2 ΩRDΩSDΩREΩ2

SE

J1−
4X

3
2Z2η2

ρ
7
2 ΩRDΩSDΩSEΩ2

RE

J2, (50)

where Iι =

∫ ∞
0

y2K0

(
2

√
yγ

ρ

)
dy, (51)

Jι =

∫ ∞
0

y
5
2K0

(
2

√
yγ

ρ

)
K1

(
2

√
yδ

ρ

)
dy, (52)

with γ = X
Ω2
SE

and δ = Z
Ω2
RE

for ι = 1, and γ = Z
Ω2
RE

and
δ = X

Ω2
SE

for ι = 2. Then, applying the change of variables
yγ
ρ = t2 in (51), and simplifying via [45, eq. (6.561.16)], we

can express Iι, for ι ∈ {1, 2}, as Iι = 2ρ3

γ3 .
Moreover, applying [46, eq. (03.04.26.0009.01)] into (52),

and simplifying using [46, 07.34.21.0011.01], we can obtain

Jι = ρ
7
2

4γ7G
2,2
2,2

(
δ
γ

∣∣∣− 5
2 ,−

5
2

1
2 ,−

1
2

)
.

Now, invoking the results of Iι and Jι, for ι ∈ {1, 2}, into
(50), and after some involved manipulations, we can express
the conditional CDF F LB

Θ (θ|X,Z) in the high-Ωij regime, for
{ij} ∈ {SR,RD,SD}, as given in (17).

APPENDIX F
PROOF OF THEOREM 4

By unconditioned (17) over X and Z, the asymptotic SOP,
Pout, LB

sec, asy(η), at high-Ωij , for {ij}∈{SR,RD,SD}, is given as

Pout, LB
sec, asy(η) =

∫ ∞
0

∫ ∞
0

F LB
Θ (η|X,Z)fX(x)fZ(z)dxdz. (53)

Now, invoking F LB
Θ (η|X,Z) from (17) alongwith the PDFs of

X and Z into (53), we can express Pout, LB
sec, asy(η) in (53) as

Pout, LB
sec, asy(η) =

1

ΩSPΩRP

[
4η2Ω4

SE

ΩRDΩSD
T1 +

4η2Ω4
RE

ΩRDΩSD
T2

− η2Ω5
SE

ΩRDΩSDΩRE
T3 −

η2Ω5
RE

ΩRDΩSDΩSE
T4

]
, (54)

where

T1 =

∫ ∞
0

∫ ∞
0

z

x
e−

x
ΩSP e−

z
ΩRP dxdz, (55)

T2 =

∫ ∞
0

∫ ∞
0

x

z
e−

x
ΩSP e−

z
ΩRP dxdz, (56)

T3 =

∫ ∞
0

∫ ∞
0

z
3
2

x
3
2

G2,2
2,2

( z
x

Ω2
SE

Ω2
RE

∣∣∣− 5
2 ,−

5
2

1
2 ,−

1
2

)
e−

x
ΩSP e−

z
ΩRP dxdz,

(57)

T4 =

∫ ∞
0

∫ ∞
0

x
3
2

z
3
2

G2,2
2,2

(x
z

Ω2
RE

Ω2
SE

∣∣∣− 5
2 ,−

5
2

1
2 ,−

1
2

)
e−

x
ΩSP e−

z
ΩRP dxdz.

(58)

Then, we can simplify T1 in (55) and T2 in (56) by applying
the identity

∫∞
0
wne−µwdw = n!µ−n−1 [45, eq. (3.351.3)] as

T1 = Ω2
RP

∫ ∞
0

1

x
e−

x
ΩSP dx, (59)

T2 = Ω2
SP

∫ ∞
0

1

z
e−

z
ΩRP dz. (60)

Furthermore, T3 in (57) can be simplified by applying the
functional relation Gm,np,q

(
x−1

∣∣ap
bq

)
= Gn,mq,p

(
x
∣∣1−bq
1−ap

)
[45, eq.

(9.31.2)] and by the use of [45, eq. (7.813.1)] as

T3 =
Ω

5
2

RP

Ω
1
2

SP

G3,3
3,3

(
ΩSP
ΩRP

Ω2
RE

Ω2
SE

∣∣∣∣ 3
2 ,

1
2 ,

3
2

5
2 ,

7
2 ,

7
2

)
. (61)

Likewise, we can obtain T4 of (58) as

T4 =
Ω

5
2

SP

Ω
1
2

RP

G3,3
3,3

(
ΩRP
ΩSP

Ω2
SE

Ω2
RE

∣∣∣∣ 3
2 ,

1
2 ,

3
2

5
2 ,

7
2 ,

7
2

)
. (62)

Then, substituting (59), (60), (61), and (62) into (54), and after
some mathematical simplifications, we can get the asymptotic
SOP expression in the high-Ωij regime, as presented in (18).
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